
R4. Information Systems

Module 4 - Information Systems
Understanding ITS/CVO Technology Applications Page RM 4 - 19/3/98 3:36 PM

TitleUS Dept of Transportation

MODULE 4 -
INFORMATION SYSTEMS

UNDERSTANDING ITS/CVO
TECHNOLOGY APPLICATIONS

Reference Manual

Module 4 - Information Systems
Understanding ITS/CVO Technology Applications Page RM 4 - 29/3/98 3:36 PM

1) Introduction to Information Systems, James A. Obrien,
Irwin/McGraw-Hill, 1997, ISBN 0-256-20937-5.

2) System Analysis and Design Methods, Jeffrey L. Whitten & Lonnie
Bentley, Irwin/McGraw-Hill, 1998, ISBN 0-256-19906-X.

3) Principles and Guidelines in Software User Interface Designs,
Deborah J. Mayhew, Prentice Hall,1992, ISBN 0-13-721929-6.

4) IEEE Std 1074-1995, IEEE Standard for Developing Software Life
Cycle Processes.

5) IEEE Std 1074.1-1995, IEEE Guide for Developing Software Life
Cycle Processes.

6) Software Engineering, IEEE Standards Collection, 1997 Edition.
7) The Software Development Project, Phillip Bruce and Sam M.

Pederson, John Wiley & Sons, 1982, ISBN 0-471-06269-3.
8) Configuration Management for Software, Stephen B. Compton and

Guy R. Conner, Van Nostrand Reinhold, 1994, ISBN 0-442-01746-4.
9) Software Engineering Standards, A User’s Roadmap, James W.

Moore, IEEE Computer Society, 1997, ISBN 0-8186-8008-3.

References

Module 4 - Information Systems
Understanding ITS/CVO Technology Applications Page RM 4 - 39/3/98 3:36 PM

A few definitions for software life cycle models from IEEE Std 610.12-1990, the IEEE
Standard Glossary of Software Engineering Terminology.

• Waterfall Model. A model of the software development process in which the constituent
activities, typically in a concept phase, requirements phase, design phase, implementation
phase, test phase, and installation and checkout phase, are performed in that order, possibly
with overlap but with little or no iteration.

• Incremental Development. A software development technique in which requirements
definition, design, implementation, and testing occur in an overlapping, iterative (rather than
sequential) manner, resulting in incremental completion of the overall software product.

• Rapid Prototyping. A type of prototyping in which emphasis is placed on developing
prototypes early in the development process to permit early feedback and analysis in support
of the development process.

• Prototyping. A hardware and software development technique in which a preliminary
version of part or all of the hardware or software is developed to permit user feedback,
determine feasibility, or investigate timing or other issues in support of the development
process.

• Spiral Model. A model of the software development process in which the constituent
activities, typically requirements analysis, preliminary and detailed design, coding, integration,
and testing, are performed iteratively until the software is complete.

Software Life Cycle Models

AN EFFECTIVE APPROACH TO
SYSTEM INTEGRATION:

A COMPREHENSIVE CHECKLIST

7th Annual Symposium of the
International Council On Systems Engineering (INCOSE)

Los Angeles, California

6 August 1997

Scott A. Hyer
The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland

Presentation Approach

• System Integration Origins and Basics
• Different Perspectives- Good Practices

– The Experts: Rechtin, Grady, Forsberg/Mooz, Martin

– INCOSE SE Process Activities “How To” Guide
– SECAM

• The Checklist

The Need for System Integration
“Relationships among the elements are what give systems their added value” - Rechtin 1991

PROBLEM
DECOMPOSITION

SOLUTION

INTEGRATION
IDENTIFICATION

PROBLEM
& DESIGN

SYSTEM

Where is System Integration in
the SE Process Flow ?

MISSION/
REQUIREMENTS
ANALYSIS

SYSTEM
ARCHITECTURE
(DESIGN)

TEST DESIGN &
BUILD

SYSTEM INTEGRATION

SYSTEM INTEGRATION

Project Cycle “V” Chart

Derived from:
Forsberg & Mooz 1991

User
Requirements

Analysis

Concept
Development

System
Specification

Functional
Allocation

Design
Formulation

Detail
Design

Fab & Assy,
Coding

Procurement, Unit
Integration
and Test

Performance
Verification

CI
Verification

Segment
Verification

System
Validation

(OT&E)

System
Verification

(ST&E)

SYSTEM

SEGMENT

CONFIGURATION
ITEM (CI)

ASSEMBLY/
MODULE

UNIT

USER NEED

Time & Maturity

C E & D D & V E & MD P & D

In
te

gr
at

io
n

&
 V

er
ifi

ca
tio

n

Decom
position &

 Definition

Remember the “Big Picture”

ADVERSE

ENVIRONMENT

OUTPUT USERS

INPUT
PROVIDER

INTERFERENCE

SUPER-SYSTEM

SYSTEM

Constraints &
Standards

INPUT
PROVIDER

“NATURAL”
ENVIRONMENT

SECAM* Perspective

* Systems Engineering Capability Assessment Model,
 Version 1.50, June 1996, INCOSE CAWG

IS
INTEGRATION

DONE AT LEAST
INFORMALLY ?

IS A FOCUSED
RESPONSIBILITY

TAKEN FOR
INTEGRATION ?

IS THERE A
DEFINED

INTEGRATION
PROCESS ?

CAN PROBLEMS
WITH THE

INTEGRATION
PROCESS BE
DETECTED ?

IS THE
INTEGRATION

PROCESS BEING
IMPROVED BY
EXPERIENCE ?

1 2 3 4 5
Level Level Level Level Level

Performed Managed Defined Measured Optimizing

System Integration Checklist
Major Activities To Be Tailored

1. Define Context of Effort
2. Define Mission and Users
3. Define Operating Environment
4. Analyze Interactions
5. Prepare ICDs
6. Evaluate User Interfaces
7. Coordinate with Test Plans
8. Evaluate System Performance
9. Conflict Resolution

SYSTEM INTEGRATION CHECKLIST (1 of 3)

TASK/ACTIVITY TOOLS &
PRODUCTS

Define Context of Effort
Write SOW to include all tasks

Context Diagram
Statement of Work

Define “Internal” and “External”
Bound effort to avoid over-extension

Define Mission and Users
Study existing information, know key players,
reference existing systems and practices

Define Operating Environment
Enhance documentation, understand driving
conditions

Concept of Ops/ORD
Distributions
List of Constraints

Environmental Descriptions
External Drivers

1.

2.

3.

Understand everything that can adversely
impact the system

Understand system’s purpose, user’s
perspective, and existing infrastructure

SYSTEM INTEGRATION CHECKLIST (2 of 3)

TASK/ACTIVITY TOOLS &
PRODUCTS

4.

5.

6.

Tabulate relationships which may be sources
of risk

N2 Chart
Risk Mitigation Plan

Define interface details and get concurrence
Interface Control
Documents (ICDs)

Involve User agents to analyze designs “on
the fly”

Mockups
User Feedback/Interviews

Involve users, get reactions, iterate

Record agreements on interface designs

(include requirements, components, ...)
Identify interfaces, eliminate non-problems

Analyze Interactions

Prepare ICDs

Evaluate User Interfaces

SYSTEM INTEGRATION CHECKLIST (3 of 3)

TASK/ACTIVITY TOOLS &
PRODUCTS

7.

8.

9.

Ensure efforts mesh with test plan & schedule
Test Plan and Descriptions

What needs to be connected ?
When do things need to be ready ?

Identify MOEs that are at risk
MOEs
System Simulation

Communicate with the project team
Action Item (AI) List
System Simulation

Predict performance (re: interactions)
Trade off candidate solutions

Keep up with the latest issues (keep AI list)
Always have a contingency plan

Coordinate with Test Plans

Evaluate System Performance

Conflict Resolution

The Final Word ...

• System Integration starts at the beginning:
– Know the system’s boundaries, mission, users, and

operating environment
– Establish a mindset through requirements, analysis,

design, and test activities

• System Integration acts as the “glue”:
– Work the interactions (interfaces, interference, etc.)
– Coordinate with testing
– Referee and resolve conflicts

